
Tools and Techniques for Prototyping Haptic Interfaces

Sensors and Sensor Processing

Katherine J. Kuchenbecker, Ph.D.
General Robotics, Automation, Sensing, and Perception Lab (GRASP)

MEAM Department, SEAS, University of Pennsylvania

Haptics Symposium 2012 Workshop March 4, 2012

My definition of a haptic interface:

My definition of a haptic interface:

Senses a physical quantity from the user,
such as motion or force

My definition of a haptic interface:

Senses a physical quantity from the user,
such as motion or force

Physically acts on the user via a variable actuator

My definition of a haptic interface:

Senses a physical quantity from the user,
such as motion or force

Physically acts on the user via a variable actuator

Connects sensing to acting with fast processing

My definition of a haptic interface:

Senses a physical quantity from the user,
such as motion or force

Physically acts on the user via a variable actuator

Connects sensing to acting with fast processing

it’s all about physical interaction with a user...

it’s all about physical interaction with a user...

human

environment

real, remote, virtual
things, places, people

haptic
interfaces

interact

it’s all about physical interaction with a user...

Haptic Interfaces

Haptic Interfaces

Tactile Devices
Stimulate skin to create contact sensations

Kinesthetic Devices
Apply forces to guide or inhibit body movement

Haptic Interfaces

Tactile Devices
Stimulate skin to create contact sensations

Kinesthetic Devices
Apply forces to guide or inhibit body movement

Haptic Interfaces

Tactile Devices
Stimulate skin to create contact sensations

Hybrid Devices
Attempt to combine tactile and kinesthetic feedback

Kinesthetic Devices
Apply forces to guide or inhibit body movement

Haptic Interfaces

Tactile Devices
Stimulate skin to create contact sensations

Hybrid Devices
Attempt to combine tactile and kinesthetic feedback

SensAble PHANToM Premium 1.0

SensAble PHANToM Premium 1.0

Measure tool tip position vector
 (possibly with orientation)

SensAble PHANToM Premium 1.0

Measure tool tip position vector
 (possibly with orientation)

Output force vector
at tool tip

SensAble PHANToM Premium 1.0

Measure tool tip position vector
 (possibly with orientation)

Output force vector
at tool tip

Cycle at 1000 Hz

Typical Components of
Kinesthetic Haptic Interfaces

Incremental
Optical Encoder

Brushed Permanent Magnet
Direct Current Motor Current Amplifier

Computer Interface Card

Capstan & Cable Drive
Stiff Metal Linkages

Typical Components of
Kinesthetic Haptic Interfaces

encoder

computer

current
amplifier

motor

linkage

handle

drum

capstan

cables

K. J. Kuchenbecker and G. Niemeyer. Modeling induced master motion in force-reflecting teleoperation. In Proc. IEEE
International Conference on Robotics and Automation, pages 348–353, Apr. 2005.

Elements of Haptic Interfaces

Katherine J. Kuchenbecker

Department of Mechanical Engineering and Applied Mechanics
University of Pennsylvania
kuchenbe@seas.upenn.edu

Course Notes for MEAM 625, University of Pennsylvania

Adapted from Section 3.1 of Professor Kuchenbecker’s Ph.D. thesis [3].

A haptic interface plays the important role of connecting the user to the
controller during interactions with remote and virtual objects. Such systems in-
corporate mechanical, electrical, and computational elements, which all interact
to create the touch-based sensations experienced by the user. This document
is concerned specifically with actuated impedance-type interfaces, which cur-
rently dominate the field due to their excellent free-space characteristics and
their widespread use in a variety of applications. During an interaction, the
controller of an impedance-type device must measure the user’s hand motion
and apply an appropriate force in response. Impedance-type haptic interfaces
vary in design, but they usually include a series of electrical and mechanical
elements between the handle and the computer, as described below.

Overview

Haptic interfaces typically provide two or three degrees of freedom in position,
sensing the user’s motion and applying feedback forces within this workspace.
Many devices also permit changes in the orientation of the end effector; these
rotational degrees of freedom can be unsensed, sensed but not actuated, or
sensed and actuated. The remainder of this discussion will focus on translation
rather than orientation, though the described design features can be applied to
either.

Figure 1 illustrates the chain of elements typically present in each axis of a
haptic interface. For clarity, the illustration depicts a device with a single degree
of freedom, but typical systems combine several degrees of freedom in parallel or
series to allow unrestricted translation and/or orientation. Although differences
exist, individual position axes of most mechanisms can be represented by such
an arrangement. The terms “haptic interface” and “master” are often used
interchangeably to represent all electrical and mechanical elements depicted in
Figure 1, extending from the amplifier and encoder to the handle.

1

SensAble PHANToM Premium 1.0

SensAble PHANToM Premium 1.0

SensAble PHANToM Premium 1.0

This is just one way to build a haptic interface....

SensAble PHANToM Premium 1.0

This is just one way to build a haptic interface....

There are many other approaches in the literature, and
there are many still to be discovered.

My definition of a haptic interface:

Senses a physical quantity from the user,
such as motion or force

Physically acts on the user via a variable actuator

Connects sensing to acting with fast processing

My definition of a haptic interface:

Senses a physical quantity from the user,
such as motion or force

Physically acts on the user via a variable actuator

Connects sensing to acting with fast processing

Sensors

Yale Mechanical Engineering

Sensors

• Sensor Specifications
• Sensor Types
• Read the Datasheet

Adapted from slides by John Morrell

Yale Mechanical Engineering

Sensors

• Sensor Specifications
• Sensor Types
• Read the Datasheet

Adapted from slides by John Morrell

Yale Mechanical Engineering

Sensors

• Sensor Specifications
• Sensor Types
• Read the Datasheet

 Small and Thin ±18 g Accelerometer
 ADXL321

Rev. 0
Information furnished by Analog Devices is believed to be accurate and reliable.
However, no responsibility is assumed by Analog Devices for its use, nor for any
infringements of patents or other rights of third parties that may result from its use.
Specifications subject to change without notice. No license is granted by implication
or otherwise under any patent or patent rights of Analog Devices. Trademarks and
registered trademarks are the property of their respective owners.

One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.
Tel: 781.329.4700 www.analog.com
Fax: 781.326.8703 © 2007 Analog Devices, Inc. All rights reserved.

FEATURES
Small and thin

4 mm × 4 mm × 1.45 mm LFCSP package
3 mg resolution at 50 Hz
Wide supply voltage range: 2.4 V to 6 V
Low power: 350 µA at VS = 2.4 V (typ)
Good zero g bias stability
Good sensitivity accuracy
X-axis and Y-axis aligned to within 0.1° (typ)
BW adjustment with a single capacitor
Single-supply operation
10,000 g shock survival
Compatible with Sn/Pb and Pb-free solder processes

APPLICATIONS
Vibration monitoring and compensation
Abuse event detection
Sports equipment

GENERAL DESCRIPTION

The ADXL321 is a small and thin, low power, complete dual-
axis accelerometer with signal conditioned voltage outputs,
which is all on a single monolithic IC. The product measures
acceleration with a full-scale range of ±18 g (typical). It can also
measure both dynamic acceleration (vibration) and static
acceleration (gravity).

The ADXL321’s typical noise floor is 320 µg/√Hz, allowing
signals below 3 mg to be resolved in tilt-sensing applications
using narrow bandwidths (<50 Hz).

The user selects the bandwidth of the accelerometer using
capacitors CX and CY at the XOUT and YOUT pins. Bandwidths of
0.5 Hz to 2.5 kHz may be selected to suit the application.

The ADXL321 is available in a very thin 4 mm × 4 mm ×
1.45 mm, 16-lead, plastic LFCSP.

FUNCTIONAL BLOCK DIAGRAM

05
29
1-
00
1

ADXL321

SENSOR

+3V

OUTPUT
AMP

OUTPUT
AMP

COM ST

VS

CDC DEMOD
AC
AMP

RFILT
32k

XOUT
CX

YOUT
CY

RFILT
32k

Figure 1.

Adapted from slides by John Morrell

Yale Mechanical Engineering

 ADXL321

Rev. 0 | Page 3 of 16

SPECIFICATIONS1

TA = 25°C, VS = 3 V, CX = CY = 0.1 µF, Acceleration = 0 g, unless otherwise noted.

Table 1.
Parameter Conditions Min Typ Max Unit
SENSOR INPUT Each axis

Measurement Range ±18 g
Nonlinearity % of full scale ±0.2 %
Package Alignment Error ±1 Degrees
Alignment Error X sensor to Y sensor ±0.1 Degrees
Cross Axis Sensitivity ±2 %

SENSITIVITY (RATIOMETRIC)2 Each axis
Sensitivity at XOUT, YOUT VS = 3 V 51 57 63 mV/g
Sensitivity Change due to Temperature3 VS = 3 V 0.01 %/°C

ZERO g BIAS LEVEL (RATIOMETRIC) Each axis
0 g Voltage at XOUT, YOUT VS = 3 V 1.4 1.5 1.6 V
0 g Offset vs. Temperature ±2 mg/°C

NOISE PERFORMANCE
Noise Density @ 25°C 320 µg/√Hz rms

FREQUENCY RESPONSE4
CX, CY Range5 0.002 10 µF
RFILT Tolerance 32 ± 15% kΩ
Sensor Resonant Frequency 5.5 kHz

SELF-TEST!

6
Logic Input Low 0.6 V
Logic Input High 2.4 V
ST Input Resistance to Ground 50 kΩ
Output Change at XOUT, YOUT Self-test 0 to 1 18 mV

OUTPUT AMPLIFIER
Output Swing Low No load 0.3 V
Output Swing High No load 2.6 V

POWER SUPPLY
Operating Voltage Range 2.4 6 V
Quiescent Supply Current 0.49 mA
Turn-On Time7 20 ms

TEMPERATURE
Operating Temperature Range −20 +70 °C

1 All minimum and maximum specifications are guaranteed. Typical specifications are not guaranteed.
2 Sensitivity is essentially ratiometric to VS.
3 Defined as the change from ambient-to-maximum temperature or ambient-to-minimum temperature.
4 Actual frequency response controlled by user-supplied external capacitor (CX, CY).
5 Bandwidth = 1/(2 × π × 32 kΩ × C). For CX, CY = 0.002 µF, bandwidth = 2500 Hz. For CX, CY = 10 µF, bandwidth = 0.5 Hz. Minimum/maximum values are not tested.
6 Self-test response changes cubically with VS.
7 Larger values of CX, CY increase turn-on time. Turn-on time is approximately 160 × CX or CY + 4 ms, where CX, CY are in µF.

Adapted from slides by John Morrell

Yale Mechanical Engineering

 ADXL321

Rev. 0 | Page 3 of 16

SPECIFICATIONS1

TA = 25°C, VS = 3 V, CX = CY = 0.1 µF, Acceleration = 0 g, unless otherwise noted.

Table 1.
Parameter Conditions Min Typ Max Unit
SENSOR INPUT Each axis

Measurement Range ±18 g
Nonlinearity % of full scale ±0.2 %
Package Alignment Error ±1 Degrees
Alignment Error X sensor to Y sensor ±0.1 Degrees
Cross Axis Sensitivity ±2 %

SENSITIVITY (RATIOMETRIC)2 Each axis
Sensitivity at XOUT, YOUT VS = 3 V 51 57 63 mV/g
Sensitivity Change due to Temperature3 VS = 3 V 0.01 %/°C

ZERO g BIAS LEVEL (RATIOMETRIC) Each axis
0 g Voltage at XOUT, YOUT VS = 3 V 1.4 1.5 1.6 V
0 g Offset vs. Temperature ±2 mg/°C

NOISE PERFORMANCE
Noise Density @ 25°C 320 µg/√Hz rms

FREQUENCY RESPONSE4
CX, CY Range5 0.002 10 µF
RFILT Tolerance 32 ± 15% kΩ
Sensor Resonant Frequency 5.5 kHz

SELF-TEST!

6
Logic Input Low 0.6 V
Logic Input High 2.4 V
ST Input Resistance to Ground 50 kΩ
Output Change at XOUT, YOUT Self-test 0 to 1 18 mV

OUTPUT AMPLIFIER
Output Swing Low No load 0.3 V
Output Swing High No load 2.6 V

POWER SUPPLY
Operating Voltage Range 2.4 6 V
Quiescent Supply Current 0.49 mA
Turn-On Time7 20 ms

TEMPERATURE
Operating Temperature Range −20 +70 °C

1 All minimum and maximum specifications are guaranteed. Typical specifications are not guaranteed.
2 Sensitivity is essentially ratiometric to VS.
3 Defined as the change from ambient-to-maximum temperature or ambient-to-minimum temperature.
4 Actual frequency response controlled by user-supplied external capacitor (CX, CY).
5 Bandwidth = 1/(2 × π × 32 kΩ × C). For CX, CY = 0.002 µF, bandwidth = 2500 Hz. For CX, CY = 10 µF, bandwidth = 0.5 Hz. Minimum/maximum values are not tested.
6 Self-test response changes cubically with VS.
7 Larger values of CX, CY increase turn-on time. Turn-on time is approximately 160 × CX or CY + 4 ms, where CX, CY are in µF.

Adapted from slides by John Morrell

 ADXL321

Rev. 0 | Page 3 of 16

SPECIFICATIONS1

TA = 25°C, VS = 3 V, CX = CY = 0.1 µF, Acceleration = 0 g, unless otherwise noted.

Table 1.
Parameter Conditions Min Typ Max Unit
SENSOR INPUT Each axis

Measurement Range ±18 g
Nonlinearity % of full scale ±0.2 %
Package Alignment Error ±1 Degrees
Alignment Error X sensor to Y sensor ±0.1 Degrees
Cross Axis Sensitivity ±2 %

SENSITIVITY (RATIOMETRIC)2 Each axis
Sensitivity at XOUT, YOUT VS = 3 V 51 57 63 mV/g
Sensitivity Change due to Temperature3 VS = 3 V 0.01 %/°C

ZERO g BIAS LEVEL (RATIOMETRIC) Each axis
0 g Voltage at XOUT, YOUT VS = 3 V 1.4 1.5 1.6 V
0 g Offset vs. Temperature ±2 mg/°C

NOISE PERFORMANCE
Noise Density @ 25°C 320 µg/√Hz rms

FREQUENCY RESPONSE4
CX, CY Range5 0.002 10 µF
RFILT Tolerance 32 ± 15% kΩ
Sensor Resonant Frequency 5.5 kHz

SELF-TEST!

6
Logic Input Low 0.6 V
Logic Input High 2.4 V
ST Input Resistance to Ground 50 kΩ
Output Change at XOUT, YOUT Self-test 0 to 1 18 mV

OUTPUT AMPLIFIER
Output Swing Low No load 0.3 V
Output Swing High No load 2.6 V

POWER SUPPLY
Operating Voltage Range 2.4 6 V
Quiescent Supply Current 0.49 mA
Turn-On Time7 20 ms

TEMPERATURE
Operating Temperature Range −20 +70 °C

1 All minimum and maximum specifications are guaranteed. Typical specifications are not guaranteed.
2 Sensitivity is essentially ratiometric to VS.
3 Defined as the change from ambient-to-maximum temperature or ambient-to-minimum temperature.
4 Actual frequency response controlled by user-supplied external capacitor (CX, CY).
5 Bandwidth = 1/(2 × π × 32 kΩ × C). For CX, CY = 0.002 µF, bandwidth = 2500 Hz. For CX, CY = 10 µF, bandwidth = 0.5 Hz. Minimum/maximum values are not tested.
6 Self-test response changes cubically with VS.
7 Larger values of CX, CY increase turn-on time. Turn-on time is approximately 160 × CX or CY + 4 ms, where CX, CY are in µF.

Yale Mechanical Engineering

 ADXL321

Rev. 0 | Page 3 of 16

SPECIFICATIONS1

TA = 25°C, VS = 3 V, CX = CY = 0.1 µF, Acceleration = 0 g, unless otherwise noted.

Table 1.
Parameter Conditions Min Typ Max Unit
SENSOR INPUT Each axis

Measurement Range ±18 g
Nonlinearity % of full scale ±0.2 %
Package Alignment Error ±1 Degrees
Alignment Error X sensor to Y sensor ±0.1 Degrees
Cross Axis Sensitivity ±2 %

SENSITIVITY (RATIOMETRIC)2 Each axis
Sensitivity at XOUT, YOUT VS = 3 V 51 57 63 mV/g
Sensitivity Change due to Temperature3 VS = 3 V 0.01 %/°C

ZERO g BIAS LEVEL (RATIOMETRIC) Each axis
0 g Voltage at XOUT, YOUT VS = 3 V 1.4 1.5 1.6 V
0 g Offset vs. Temperature ±2 mg/°C

NOISE PERFORMANCE
Noise Density @ 25°C 320 µg/√Hz rms

FREQUENCY RESPONSE4
CX, CY Range5 0.002 10 µF
RFILT Tolerance 32 ± 15% kΩ
Sensor Resonant Frequency 5.5 kHz

SELF-TEST!

6
Logic Input Low 0.6 V
Logic Input High 2.4 V
ST Input Resistance to Ground 50 kΩ
Output Change at XOUT, YOUT Self-test 0 to 1 18 mV

OUTPUT AMPLIFIER
Output Swing Low No load 0.3 V
Output Swing High No load 2.6 V

POWER SUPPLY
Operating Voltage Range 2.4 6 V
Quiescent Supply Current 0.49 mA
Turn-On Time7 20 ms

TEMPERATURE
Operating Temperature Range −20 +70 °C

1 All minimum and maximum specifications are guaranteed. Typical specifications are not guaranteed.
2 Sensitivity is essentially ratiometric to VS.
3 Defined as the change from ambient-to-maximum temperature or ambient-to-minimum temperature.
4 Actual frequency response controlled by user-supplied external capacitor (CX, CY).
5 Bandwidth = 1/(2 × π × 32 kΩ × C). For CX, CY = 0.002 µF, bandwidth = 2500 Hz. For CX, CY = 10 µF, bandwidth = 0.5 Hz. Minimum/maximum values are not tested.
6 Self-test response changes cubically with VS.
7 Larger values of CX, CY increase turn-on time. Turn-on time is approximately 160 × CX or CY + 4 ms, where CX, CY are in µF.

Adapted from slides by John Morrell

 ADXL321

Rev. 0 | Page 3 of 16

SPECIFICATIONS1

TA = 25°C, VS = 3 V, CX = CY = 0.1 µF, Acceleration = 0 g, unless otherwise noted.

Table 1.
Parameter Conditions Min Typ Max Unit
SENSOR INPUT Each axis

Measurement Range ±18 g
Nonlinearity % of full scale ±0.2 %
Package Alignment Error ±1 Degrees
Alignment Error X sensor to Y sensor ±0.1 Degrees
Cross Axis Sensitivity ±2 %

SENSITIVITY (RATIOMETRIC)2 Each axis
Sensitivity at XOUT, YOUT VS = 3 V 51 57 63 mV/g
Sensitivity Change due to Temperature3 VS = 3 V 0.01 %/°C

ZERO g BIAS LEVEL (RATIOMETRIC) Each axis
0 g Voltage at XOUT, YOUT VS = 3 V 1.4 1.5 1.6 V
0 g Offset vs. Temperature ±2 mg/°C

NOISE PERFORMANCE
Noise Density @ 25°C 320 µg/√Hz rms

FREQUENCY RESPONSE4
CX, CY Range5 0.002 10 µF
RFILT Tolerance 32 ± 15% kΩ
Sensor Resonant Frequency 5.5 kHz

SELF-TEST!

6
Logic Input Low 0.6 V
Logic Input High 2.4 V
ST Input Resistance to Ground 50 kΩ
Output Change at XOUT, YOUT Self-test 0 to 1 18 mV

OUTPUT AMPLIFIER
Output Swing Low No load 0.3 V
Output Swing High No load 2.6 V

POWER SUPPLY
Operating Voltage Range 2.4 6 V
Quiescent Supply Current 0.49 mA
Turn-On Time7 20 ms

TEMPERATURE
Operating Temperature Range −20 +70 °C

1 All minimum and maximum specifications are guaranteed. Typical specifications are not guaranteed.
2 Sensitivity is essentially ratiometric to VS.
3 Defined as the change from ambient-to-maximum temperature or ambient-to-minimum temperature.
4 Actual frequency response controlled by user-supplied external capacitor (CX, CY).
5 Bandwidth = 1/(2 × π × 32 kΩ × C). For CX, CY = 0.002 µF, bandwidth = 2500 Hz. For CX, CY = 10 µF, bandwidth = 0.5 Hz. Minimum/maximum values are not tested.
6 Self-test response changes cubically with VS.
7 Larger values of CX, CY increase turn-on time. Turn-on time is approximately 160 × CX or CY + 4 ms, where CX, CY are in µF.

Yale Mechanical Engineering

Sensor Specifications

Static Measures
• Range: minimum to maximum of measurable physical quantity, e.g., 10-20 PSI
• Span: the limits between minimum and maximum value the sensor can measure
• Error: measured value minus true value, often associated with a specific cause
• Accuracy: total of the effects of all errors
• Sensitivity: Gain (output divided by input), may be ratiometric with supply voltage

Dynamic Measures
• Response Time - time to achieve 95% of final value
• Time Constant - time to achieve 63% of final value
• Rise time - time from 10% to 90% of final value
• Settling time - time to get and stay within 2% of final value

Adapted from slides by John Morrell

Yale Mechanical Engineering

Imperfections

• Hysteresis: Sensitivity to direction of change
• Nonlinearity: deviation from linear relationship

(constant gain)
• Repeatability: produces the same output for the

same input (not the same as accuracy)
• Stability: holding the same value over a period of

time
• Deadband/Dead Time: period or range of input

where no output occurs
• Resolution: Smallest change in input that will

cause a change in output
• Output Impedance: ability to deliver current, lower

is better

Adapted from slides by John Morrell

Yale Mechanical Engineering

Sensor Types

Adapted from slides by John Morrell

Yale Mechanical Engineering

Sensor Types

• All convert a physical effect into an electrical signal

Adapted from slides by John Morrell

Yale Mechanical Engineering

Sensor Types

• All convert a physical effect into an electrical signal
– Measure a voltage or current using capacitance, resistance,

inductance

Adapted from slides by John Morrell

Yale Mechanical Engineering

Sensor Types

• All convert a physical effect into an electrical signal
– Measure a voltage or current using capacitance, resistance,

inductance
– May output analog voltage, digital signal, serial comm., current, etc.

Adapted from slides by John Morrell

Yale Mechanical Engineering

Sensor Types

• All convert a physical effect into an electrical signal
– Measure a voltage or current using capacitance, resistance,

inductance
– May output analog voltage, digital signal, serial comm., current, etc.

• Choosing a sensor is always about:

Adapted from slides by John Morrell

Yale Mechanical Engineering

Sensor Types

• All convert a physical effect into an electrical signal
– Measure a voltage or current using capacitance, resistance,

inductance
– May output analog voltage, digital signal, serial comm., current, etc.

• Choosing a sensor is always about:
– Cost

Adapted from slides by John Morrell

Yale Mechanical Engineering

Sensor Types

• All convert a physical effect into an electrical signal
– Measure a voltage or current using capacitance, resistance,

inductance
– May output analog voltage, digital signal, serial comm., current, etc.

• Choosing a sensor is always about:
– Cost
– Size

Adapted from slides by John Morrell

Yale Mechanical Engineering

Sensor Types

• All convert a physical effect into an electrical signal
– Measure a voltage or current using capacitance, resistance,

inductance
– May output analog voltage, digital signal, serial comm., current, etc.

• Choosing a sensor is always about:
– Cost
– Size
– Accuracy

Adapted from slides by John Morrell

Yale Mechanical Engineering

Sensor Types

• All convert a physical effect into an electrical signal
– Measure a voltage or current using capacitance, resistance,

inductance
– May output analog voltage, digital signal, serial comm., current, etc.

• Choosing a sensor is always about:
– Cost
– Size
– Accuracy
– Durability

Adapted from slides by John Morrell

Yale Mechanical Engineering

Sensor Types

• All convert a physical effect into an electrical signal
– Measure a voltage or current using capacitance, resistance,

inductance
– May output analog voltage, digital signal, serial comm., current, etc.

• Choosing a sensor is always about:
– Cost
– Size
– Accuracy
– Durability
– Availability

Adapted from slides by John Morrell

Yale Mechanical Engineering

Sensor Types

• All convert a physical effect into an electrical signal
– Measure a voltage or current using capacitance, resistance,

inductance
– May output analog voltage, digital signal, serial comm., current, etc.

• Choosing a sensor is always about:
– Cost
– Size
– Accuracy
– Durability
– Availability
– Compatibility with rest of system (interference, communication)

Adapted from slides by John Morrell

Yale Mechanical Engineering

Sensor Types

• All convert a physical effect into an electrical signal
– Measure a voltage or current using capacitance, resistance,

inductance
– May output analog voltage, digital signal, serial comm., current, etc.

• Choosing a sensor is always about:
– Cost
– Size
– Accuracy
– Durability
– Availability
– Compatibility with rest of system (interference, communication)
– Other concerns?

Adapted from slides by John Morrell

Mechanical Trackers
Ground-based linkages most commonly used
Position Sensors

 Analog: potentiometers or Hall-effect (magnetic)
 Digital: encoders (optical or MR)

© A. Okamura 2006Adapted from slides by Will Provancher

Yale Mechanical Engineering

Potentiometers

• Typically rotary, but linear
exist.

• Cheap and easy.
• Moving parts means it can

wear out.
• Hard to waterproof or

dustproof.
• Has non-negligible friction.

Adapted from slides by John Morrell

Hall-Effect Sensors
How do they work?

 A small transverse voltage is generated across a
current-carrying conductor in the presence of a
magnetic field

(Discovery made in
1879, but not useful
until the advent of
semiconductor
technology)

© A. Okamura 2006Adapted from slides by Will Provancher

Hall-Effect Sensors

Amount of voltage output related to the
strength of magnetic field passing through.

Linear over small range of motion
 Need to be calibrated

Affected by temperature, other magnetic
objects in the environments

© A. Okamura 2006Adapted from slides by Will Provancher

Hall-Effect Sensors

The voltage varies sinusoidally with rotation
angle

From Stanford
Haptic Paddle

© A. Okamura + W. Provancher 2009Adapted from slides by Will Provancher

Encoder
encoder

computer

current
amplifier

motor

linkage

handle

drum

capstan

cables

Some material adapted from slides by A. Okamura and W. Provancher

Encoder
encoder

computer

current
amplifier

motor

linkage

handle

drum

capstan

cables

Some material adapted from slides by A. Okamura and W. Provancher

The most common motion sensor in haptics is the
incremental optical encoder, often by Agilent.

Encoder
encoder

computer

current
amplifier

motor

linkage

handle

drum

capstan

cables

Some material adapted from slides by A. Okamura and W. Provancher

The most common motion sensor in haptics is the
incremental optical encoder, often by Agilent.

•A thin disk is attached to the rotating shaft whose
angle you want to measure, usually the motor.

Encoder
encoder

computer

current
amplifier

motor

linkage

handle

drum

capstan

cables

Some material adapted from slides by A. Okamura and W. Provancher

The most common motion sensor in haptics is the
incremental optical encoder, often by Agilent.

•A thin disk is attached to the rotating shaft whose
angle you want to measure, usually the motor.

•The disk has slits cut into it in a regular pattern.

Encoder
encoder

computer

current
amplifier

motor

linkage

handle

drum

capstan

cables

Some material adapted from slides by A. Okamura and W. Provancher

The most common motion sensor in haptics is the
incremental optical encoder, often by Agilent.

•A thin disk is attached to the rotating shaft whose
angle you want to measure, usually the motor.

•The disk has slits cut into it in a regular pattern.

•A light shines on the disk on one side, and photo
sensors are located on the opposite side.

Encoder
encoder

computer

current
amplifier

motor

linkage

handle

drum

capstan

cables

Some material adapted from slides by A. Okamura and W. Provancher

The most common motion sensor in haptics is the
incremental optical encoder, often by Agilent.

•A thin disk is attached to the rotating shaft whose
angle you want to measure, usually the motor.

•The disk has slits cut into it in a regular pattern.

•A light shines on the disk on one side, and photo
sensors are located on the opposite side.

•Produces a number of pulses per revolution, with
higher resolution being more expensive.

Encoder
encoder

computer

current
amplifier

motor

linkage

handle

drum

capstan

cables

Some material adapted from slides by A. Okamura and W. Provancher

Two channels of
pulses, 90 degrees

out of phase:
quadrature

∆ =
2 π

4 n

Quadrature Encoder States & Decoding

Ch. 1

Ch. 2 0

0

0

1

1

1

1

0

Encoder States

A B C D

A B C D

Disk rotation CCW

Disk rotation CW

1

1

00

1

1

00

A B C D

Disk rotation CCW

45 deg.

Simplified Encoder Disk
(4 CPR, 16 PPR) (shown in state A)

Ch. 1 Encoder Sensor

Ch. 2 Encoder
Sensor

C
C

W
 D

isk
 R

otation

Blocks
transmission
of light

Allows
transmission of
light (hole)

2

1

Ch. 1 Encoder
Signal

Ch. 2 Encoder
Signal

© W. Provancher 2009

EmitterDetector

Adapted from slides by Will Provancher

Quadrature Encoder States & Decoding

Ch. 1

Ch. 2 0

0

0

1

1

1

1

0

Encoder States

A B C D

A B C D

Disk rotation CCW

Disk rotation CW

1

1

00

1

1

00

A B C D

Disk rotation CCW

45 deg.

Simplified Encoder Disk
(4 CPR, 16 PPR) (shown in state A)

Ch. 1 Encoder Sensor

Ch. 2 Encoder
Sensor

C
C

W
 D

isk
 R

otation

Blocks
transmission
of light

Allows
transmission of
light (hole)

2

1

Ch. 1 Encoder
Signal

Ch. 2 Encoder
Signal

© W. Provancher 2009

EmitterDetector

Adapted from slides by Will Provancher

Quadrature Encoder States & Decoding

Ch. 1

Ch. 2 0

0

0

1

1

1

1

0

Encoder States

A B C D

A B C D

Disk rotation CCW

Disk rotation CW

1

1

00

1

1

00

A B C D

Disk rotation CCW

45 deg.

Simplified Encoder Disk
(4 CPR, 16 PPR) (shown in state A)

Ch. 1 Encoder Sensor

Ch. 2 Encoder
Sensor

C
C

W
 D

isk
 R

otation

Blocks
transmission
of light

Allows
transmission of
light (hole)

2

1

Ch. 1 Encoder
Signal

Ch. 2 Encoder
Signal

© W. Provancher 2009

EmitterDetector

Adapted from slides by Will Provancher

Quadrature Encoder States & Decoding

Ch. 1

Ch. 2 0

0

0

1

1

1

1

0

Encoder States

A B C D

A B C D

Disk rotation CCW

Disk rotation CW

1

1

00

1

1

00

A B C D

Disk rotation CCW

45 deg.

Simplified Encoder Disk
(4 CPR, 16 PPR) (shown in state A)

Ch. 1 Encoder Sensor

Ch. 2 Encoder
Sensor

C
C

W
 D

isk
 R

otation

Blocks
transmission
of light

Allows
transmission of
light (hole)

2

1

Ch. 1 Encoder
Signal

Ch. 2 Encoder
Signal

© W. Provancher 2009

EmitterDetector

Adapted from slides by Will Provancher

Encoder
encoder

computer

current
amplifier

motor

linkage

handle

drum

capstan

cables

Some material adapted from slides by A. Okamura and W. Provancher

Encoder
encoder

computer

current
amplifier

motor

linkage

handle

drum

capstan

cables

Some material adapted from slides by A. Okamura and W. Provancher

Ramifications of using incremental of optical encoders:

Encoder
encoder

computer

current
amplifier

motor

linkage

handle

drum

capstan

cables

Some material adapted from slides by A. Okamura and W. Provancher

Ramifications of using incremental of optical encoders:

•The system has no knowledge of absolute position,
because it’s always just counting pulses.

Encoder
encoder

computer

current
amplifier

motor

linkage

handle

drum

capstan

cables

Some material adapted from slides by A. Okamura and W. Provancher

Ramifications of using incremental of optical encoders:

•The system has no knowledge of absolute position,
because it’s always just counting pulses.

•How can you solve this?

Encoder
encoder

computer

current
amplifier

motor

linkage

handle

drum

capstan

cables

Some material adapted from slides by A. Okamura and W. Provancher

Ramifications of using incremental of optical encoders:

•The system has no knowledge of absolute position,
because it’s always just counting pulses.

•How can you solve this?

•Calibration pose (SensAble)

Encoder
encoder

computer

current
amplifier

motor

linkage

handle

drum

capstan

cables

Some material adapted from slides by A. Okamura and W. Provancher

Ramifications of using incremental of optical encoders:

•The system has no knowledge of absolute position,
because it’s always just counting pulses.

•How can you solve this?

•Calibration pose (SensAble)

•Secondary sensors with absolute readings (da Vinci)

Encoder
encoder

computer

current
amplifier

motor

linkage

handle

drum

capstan

cables

Some material adapted from slides by A. Okamura and W. Provancher

Ramifications of using incremental of optical encoders:

•The system has no knowledge of absolute position,
because it’s always just counting pulses.

•How can you solve this?

•Calibration pose (SensAble)

•Secondary sensors with absolute readings (da Vinci)

• Sometimes problems occur at high velocities.

Encoder
encoder

computer

current
amplifier

motor

linkage

handle

drum

capstan

cables

Some material adapted from slides by A. Okamura and W. Provancher

Ramifications of using incremental of optical encoders:

•The system has no knowledge of absolute position,
because it’s always just counting pulses.

•How can you solve this?

•Calibration pose (SensAble)

•Secondary sensors with absolute readings (da Vinci)

• Sometimes problems occur at high velocities.

•No noise on position, but uncertainty due to
resolution, and significant noise on velocity.

Encoder
encoder

computer

current
amplifier

motor

linkage

handle

drum

capstan

cables

Some material adapted from slides by A. Okamura and W. Provancher

Ramifications of using incremental of optical encoders:

•The system has no knowledge of absolute position,
because it’s always just counting pulses.

•How can you solve this?

•Calibration pose (SensAble)

•Secondary sensors with absolute readings (da Vinci)

• Sometimes problems occur at high velocities.

•No noise on position, but uncertainty due to
resolution, and significant noise on velocity.

θm = ∆(Q − Qzero)

Yale Mechanical Engineering

LVDT

• Linear variable displacement
transducer

• Very accurate
• More complex to support than

potentiometers or encoders –
need multiple AC voltage
sources

• Inherently analog

Adapted from slides by John Morrell

Yale Mechanical Engineering

Proximity Sensors

• Implies that one only wants data
when something is close – don’t care
when it is “far away”
– Eddy current proximity sensor – lower

accuracy
– Inductive proximity sensor – senses

metallic objects
– Limit switch – rugged sealed on/off

designed for repeated contact with
moving parts

– Infrared emitter-detector pair –
reflected IR from source gives
indication of distance

– Ultrasonic range sensor – reflected
ultrasonic signal from source gives
indication of distance

Adapted from slides by John Morrell

Yale Mechanical Engineering

Switches

• Rotary, pushbutton, slide,
toggle, tilt …

• Momentary vs. Persistent
ON/OFF

• Many, many types
• Bounce

Videos from http://video_demos.colostate.edu/mechatronics/

Adapted from slides by John Morrell

Yale Mechanical Engineering

Switches

• Rotary, pushbutton, slide,
toggle, tilt …

• Momentary vs. Persistent
ON/OFF

• Many, many types
• Bounce

Videos from http://video_demos.colostate.edu/mechatronics/

Adapted from slides by John Morrell

Yale Mechanical Engineering

Light

• Photodiodes, phototransistors,
photoresistors
– Small, easy to fit into electronic systems.
– Require electrical engineering knowledge to

implement properly.
– Can set up in a variety of ways, including

distance reflectance, gray-scale
reflectance, distance intensity, break beam

– Ambient light can impact performance.

Adapted from slides by John Morrell

Yale Mechanical Engineering

Strain Gauges

• Change in length changes
resistance

• Temperature also changes
resistance

Adapted from slides by John Morrell

Yale Mechanical Engineering

Force Sensing

• Measure the position change on
an elastic element

• Strain gauge load cell – clever
layout of gauges & material
shape to create accurate
system

• Fluid pressure on a diaphragm –
measure change in length/size
of a diaphragm with strain
gauges

• Piezo electric crystals –
generate electrical signals when
a strain is generated – typically
used for high frequency force
changes (accelerations)

Adapted from slides by John Morrell

Yale Mechanical Engineering

A load cell

• A piece of metal that is designed to deform in a
predictable way to create a measurement of load (torque
and/or force)

Adapted from slides by John Morrell

Force Sensors

 How do they work?
 Typically a flexure + a strain

gage (sometimes also
piezoelectric sensors, but
these tend to drift)

 A good quality 6-axis force-
torque sensor is ~$6000
 Mechanically delicate - do not

drop or hit
 Sensitive to temperature

fluctuations

© W. Provancher 2009

6-Axis JR3 Force
Torque Load Cell

JR3.com

www.ati-ia.com

ATI Nano17 Transducer

Adapted from slides by Will Provancher

Force Sensing Resistors
 Known as FSRs

 Piezoresistive ink
 Tons of sensor drift and

hysteresis, sensitivity to contact
location

 Very thin!
 Cheap ~$10
 Use drive circuit recommended

by manufacturer to get voltage
output that is approximately
linear with force

© W. Provancher 2009

Tekscan Flexiforce FSR

www.tekscan.com/flexiforce

www.interlinkelectronics.com

Interlink FSR

Adapted from slides by Will Provancher

Yale Mechanical Engineering

Temperature

• Thermistor
• RTD
• Thermocouples

• Equations vary
but they are all
nonlinear and
require some
“figuring” to get
the right answer

Adapted from slides by John Morrell

Inertial Sensing

Inertial Sensing

Inertial Sensing

MEMS-based Accelerometers

MEMS-based Accelerometers

spring

damper

proof
mass

accelerometer
case and

your device

spring

damper

proof
mass

accelerometer
case and

your device

Measures acceleration and gravity

MEMS-based Rate Gyroscopes

MEMS-based Rate Gyroscopes

MEMS-based Rate Gyroscopes

Measures angular velocity

Inertial Measurement Units (IMUs)

9 Degrees of Freedom on a single,
flat board for $125:

ITG-3200 - triple-axis digital-
output gyroscope

ADXL345 - 13-bit resolution,
±16g, triple-axis accelerometer

HMC5883L - triple-axis, digital
magnetometer

Outputs of all sensors processed
by on-board ATmega328 and sent

out via a serial stream

Inertial Measurement Units (IMUs)

Same sensors in a
clean package with all

processing and
software done for

you, estimates
absolute heading,
around $2000?

Magnetic Tracking

Field generator creates
magnetic field; small

wired sensors used to
estimate position and
orientation of tracked
item; bad interference

from metal and
electromagnetic

actuators; price ranges
from ~$300 (Razer
Hydra) to ~$16,000

(precise, medical use).

Optical Tracking

Custom camera
system with blob
detection in 2D;

limited by camera
frame rate,

processing time

Optical Tracking

VICON system, many cameras, passive markers, >$100k

Optical Tracking

OptoTrak system: 3 cameras, active markers, ~$50k?

Optical Tracking

WiiMote camera: finds 4 brightest IR spots, ~$40

Optical Tracking

Kinect: color camera with depth, tracks humans, ~$200

!"#$%&'

!

ADNB-6532
Small Form Factor LaserStreamTM Mouse Bundle

Data Sheet

Description

The Avago Technologies ADNB-6532 LaserStream
mouse bundle is the small form factor (SFF) laser-
illuminated navigation system. Targeted at cordless
applications, the bundle consists of an integrated chip-
on-board (COB) LaserStream mouse sensor, ADNS-6530
and a SFF lens, ADNS-6150. The chip integrates the
sensor and VCSEL into a single package, providing a
small form factor. This new opto-mechanical
architecture allows for more compact and cost-effective
mouse designs. Powered by latest Avago Technologies
LaserStream™ engine, the mouse can track on more
than traditional LED-based optical navigation,
especially on glossy and reflective ones. In addition,
the high-performance, low power architecture is
capable of sensing high-speed mouse motion while
prolonging battery life - two performance areas
essential in demanding cordless applications.

ADNB-6532 small form factor LaserStream mouse
bundle includes:

Bundle Part Number Part Number Description

ADNB-6532 ADNS-6530 Integrated COB LaserStream sensor

ADNS-6150 Small form factor lens

The ADNS-6530 integrated COB LaserStream sensor
along with the ADNS-6150 SFF lens form a complete
and compact laser mouse tracking system. There is no
moving part, which means high reliability and less
maintenance for the end user. In addition, precision
optical alignment is not required, facilitating high
volume assembly.

This document will begin with some general
information and usage guidelines on the bundle set,
followed by individual detailed information on ADNS-
6530 integrated COB LaserStream sensor and ADNS-
6150 SFF lens.

Optical Tracking

Mouse Sensor: senses optical flow in 2D, digital comm.

Yale Mechanical Engineering

Sensor Videos

Videos from http://video_demos.colostate.edu/mechatronics/

Adapted from slides by John Morrell

Yale Mechanical Engineering

Sensor Videos

Videos from http://video_demos.colostate.edu/mechatronics/

Adapted from slides by John Morrell

Virtual Fixture Control for Compliant Human-Machine Interfaces

Panadda Marayong, Hye Sun Na, and Allison M. Okamura

Abstract— In human-machine collaborative systems, robot
joint compliance and human-input dynamics lead to involuntary
tool motion into undesired regions. To correct this, a set
of methods, called Dynamically-Defined Virtual Fixtures, was
previously proposed to create a movable virtual fixture that
stops the user at a safe distance outside the forbidden region.
In this work, a new method, called the Force-Based Method,
was added. A vision system was introduced for real-time tool
tracking. Additionally, we implemented a closed-loop controller
with the virtual fixtures that allows the user to reach, but
not enter, the forbidden region. Two user experiments were
conducted on a 1-DOF testbed to evaluate the virtual fixture
methods. The first experiment showed the effectiveness of the
virtual fixtures in preventing the penetration. However, the
absence of haptic feedback in the closed-loop implementation
resulted in boundary penetration. In the second experiment,
visual feedback was used to compensate for the lack of haptic
feedback. User cognitive load was added as an inhibiting
factor in a human-machine cooperative setting. The experiment
showed a significant reduction in penetration with visual feed-
back, while the addition of cognitive load did not significantly
increase the penetration.

I. INTRODUCTION

Human-machine cooperative systems offer an ideal setting
in which the precision and repeatability of a robot are
combined with the intelligence and experience of a human
operator. Software-generated virtual fixtures can be added
to these systems to guide a tool along desired paths in the
workspace (Guidance virtual fixtures) or to prevent the tool
from entering undesired regions (Forbidden-Region virtual
fixtures) [1], [2], [10], [12], [13], [14]. During cooperative
manipulation with an admittance-controlled system, the hu-
man operator actively exerts force on the tool to generate
robot motion. The JHU Steady-Hand Robot [15] shown in
Figure 1(a) is an example of such a system. Despite its high
rigidity and non-backdrivability, previous experiments show
that even small joint and link compliance visibly degrade
virtual fixture performance [9]. Unmodeled deviations in
the mapping from robot joint space to the environment/task
space cause the virtual fixture location to be incorrectly de-
fined. The operator’s hand dynamics and cognitive delay that
occur at the time of virtual fixture contact result in additional
tool motion. With the robot compliance, this motion causes
the tool to move in an undesired direction/region.

Our work focuses on the evaluation of control methods de-
veloped for implementing Forbidden-Region virtual fixtures

This work was supported by NSF Grants ITR-0205318 and EEC-9731748
P. Marayong and A. Okamura are with the Engineering Research Center

for Computer-Integrated Surgical Systems and Technology, Johns Hop-
kins University, Baltimore, MD 21218, USA pmarayong@jhu.edu,
aokamura@jhu.edu

H. Na is with the Department of Biomedical Engineering, University of
Texas, Austin, TX 78712, USA hyesunna@mail.utexas.edu

(a)

(b)

Force Sensor

Tool

Linear Stage

Nitinol Strip

Marker

Fig. 1. (a) The Steady-Hand Robot [15] with locations of joint compliance
circled. (b) The 1-DOF testbed with four Nitinol strips connecting the tool
and the stage to simulate joint compliance.

on a system with joint compliance. With Forbidden-Region
virtual fixtures, the tool is prevented from entering into an
undesired region while giving the operator total freedom to
manipulate the tool outside of the region. In [11], we pre-
sented a set of methods, called Dynamically-Defined Virtual
Fixtures, to create a movable virtual fixture that stopped the
tool at a safe location in front of the forbidden region. The
two methods proposed were the Velocity-Based and Hand-
Dynamic Methods. Specifically, the methods predict the
amount of potential overshoot due to the system dynamics
and use the information to define the new virtual fixture
position. In the Hand-Dynamic Method, the user’s hand
dynamics were included in the model. The two methods were
implemented in an open-loop fashion, where the robot was
stopped once the algorithm determined the possibility of an
overshoot. The experimental results in [11] showed that the
methods effectively prevented forbidden-region penetration;
however, the tool was stopped at a conservative distance
outside the region. This deviation may not be desirable in
applications that require the tool to be manipulated closer
to or on the surface of the forbidden region. In this work,
we extend the virtual fixture methods to include a closed-
loop control that allows the user to reach the forbidden
region following an overdamped trajectory. In addition, a

Image from Marayong, Na, and Okamura (ICRA 2007)

Quick Quiz What sensors do you see?

Optical

Virtual Fixture Control for Compliant Human-Machine Interfaces

Panadda Marayong, Hye Sun Na, and Allison M. Okamura

Abstract— In human-machine collaborative systems, robot
joint compliance and human-input dynamics lead to involuntary
tool motion into undesired regions. To correct this, a set
of methods, called Dynamically-Defined Virtual Fixtures, was
previously proposed to create a movable virtual fixture that
stops the user at a safe distance outside the forbidden region.
In this work, a new method, called the Force-Based Method,
was added. A vision system was introduced for real-time tool
tracking. Additionally, we implemented a closed-loop controller
with the virtual fixtures that allows the user to reach, but
not enter, the forbidden region. Two user experiments were
conducted on a 1-DOF testbed to evaluate the virtual fixture
methods. The first experiment showed the effectiveness of the
virtual fixtures in preventing the penetration. However, the
absence of haptic feedback in the closed-loop implementation
resulted in boundary penetration. In the second experiment,
visual feedback was used to compensate for the lack of haptic
feedback. User cognitive load was added as an inhibiting
factor in a human-machine cooperative setting. The experiment
showed a significant reduction in penetration with visual feed-
back, while the addition of cognitive load did not significantly
increase the penetration.

I. INTRODUCTION

Human-machine cooperative systems offer an ideal setting
in which the precision and repeatability of a robot are
combined with the intelligence and experience of a human
operator. Software-generated virtual fixtures can be added
to these systems to guide a tool along desired paths in the
workspace (Guidance virtual fixtures) or to prevent the tool
from entering undesired regions (Forbidden-Region virtual
fixtures) [1], [2], [10], [12], [13], [14]. During cooperative
manipulation with an admittance-controlled system, the hu-
man operator actively exerts force on the tool to generate
robot motion. The JHU Steady-Hand Robot [15] shown in
Figure 1(a) is an example of such a system. Despite its high
rigidity and non-backdrivability, previous experiments show
that even small joint and link compliance visibly degrade
virtual fixture performance [9]. Unmodeled deviations in
the mapping from robot joint space to the environment/task
space cause the virtual fixture location to be incorrectly de-
fined. The operator’s hand dynamics and cognitive delay that
occur at the time of virtual fixture contact result in additional
tool motion. With the robot compliance, this motion causes
the tool to move in an undesired direction/region.

Our work focuses on the evaluation of control methods de-
veloped for implementing Forbidden-Region virtual fixtures

This work was supported by NSF Grants ITR-0205318 and EEC-9731748
P. Marayong and A. Okamura are with the Engineering Research Center

for Computer-Integrated Surgical Systems and Technology, Johns Hop-
kins University, Baltimore, MD 21218, USA pmarayong@jhu.edu,
aokamura@jhu.edu

H. Na is with the Department of Biomedical Engineering, University of
Texas, Austin, TX 78712, USA hyesunna@mail.utexas.edu

(a)

(b)

Force Sensor

Tool

Linear Stage

Nitinol Strip

Marker

Fig. 1. (a) The Steady-Hand Robot [15] with locations of joint compliance
circled. (b) The 1-DOF testbed with four Nitinol strips connecting the tool
and the stage to simulate joint compliance.

on a system with joint compliance. With Forbidden-Region
virtual fixtures, the tool is prevented from entering into an
undesired region while giving the operator total freedom to
manipulate the tool outside of the region. In [11], we pre-
sented a set of methods, called Dynamically-Defined Virtual
Fixtures, to create a movable virtual fixture that stopped the
tool at a safe location in front of the forbidden region. The
two methods proposed were the Velocity-Based and Hand-
Dynamic Methods. Specifically, the methods predict the
amount of potential overshoot due to the system dynamics
and use the information to define the new virtual fixture
position. In the Hand-Dynamic Method, the user’s hand
dynamics were included in the model. The two methods were
implemented in an open-loop fashion, where the robot was
stopped once the algorithm determined the possibility of an
overshoot. The experimental results in [11] showed that the
methods effectively prevented forbidden-region penetration;
however, the tool was stopped at a conservative distance
outside the region. This deviation may not be desirable in
applications that require the tool to be manipulated closer
to or on the surface of the forbidden region. In this work,
we extend the virtual fixture methods to include a closed-
loop control that allows the user to reach the forbidden
region following an overdamped trajectory. In addition, a

Image from Marayong, Na, and Okamura (ICRA 2007)

Quick Quiz What sensors do you see?

Encoder

Optical

Any other types of sensors you are wondering about?

Sensor Processing

encoder

computer

current
amplifier

motor

linkage

handle

drum

capstan

cables

Illustration from K. J. Kuchenbecker and G. Niemeyer, “Induced Master Motion in Force-Reflecting Teleoperation.”
ASME Journal of Dynamic Systems, Measurement, and Control. Volume 128(4):800-810, December 2006.

encoder

computer

current
amplifier

motor

linkage

handle

drum

capstan

cables

Illustration from K. J. Kuchenbecker and G. Niemeyer, “Induced Master Motion in Force-Reflecting Teleoperation.”
ASME Journal of Dynamic Systems, Measurement, and Control. Volume 128(4):800-810, December 2006.

Graphics, Remote Robot,
and Other Slower Processes

!xk = Λ(!qk)
Forward Kinematics: from joint values to tip position

!fk = Fi(!xk)

Force Computation: from tip position to tip force

!τk = [J(!qk)]T !fk

Torque Computation: from tip force to joint torques

!rk = !c ∗ !τk + !d

Output Processing: from joint torques to counts

!qk = !a ∗ !Qk +!b

Input Processing: from counts to joint values

encoder

computer

current
amplifier

motor

linkage

handle

drum

capstan

cables

Digital or Serial or D2A
(Digital-to-Analog Converter)

Counter or Serial or A2D
(Analog-to-Digital Converter)

Typical Software Configuration

to the
current amplifiers

from the
motion sensors

Input: from sensor signals to counts

Output: from counts to command signals

D/A and A/D
Converts between

voltages and counts
Computer stores

information digitally, and
communicates with the
outside world using
signed voltage signals
 e.g., for 8-bit 0-5V ADC

2.5V = 10000000

Hexadecimal Binary Decimal

0 0000 0

1 0001 1

2 0010 2

3 0011 3

4 0100 4

5 0101 5

6 0110 6

7 0111 7

8 1000 8

9 1001 9

A 1010 10

B 1011 11

C 1100 12

D 1101 13

E 1110 14

F 1111 15 MSB LSB
© A. Okamura 2006Adapted from slides by Will Provancher

Input Processing Steps

Input Processing Steps

• Get counts Qj from encoder counters, serial
communications, or analog-to-digital conversions.

Input Processing Steps

• Get counts Qj from encoder counters, serial
communications, or analog-to-digital conversions.

• Convert counts to sensor shaft angles θsj or
sensor displacements dsj using knowledge of the
sensor’s characteristics.

Input Processing Steps

• Get counts Qj from encoder counters, serial
communications, or analog-to-digital conversions.

• Convert counts to sensor shaft angles θsj or
sensor displacements dsj using knowledge of the
sensor’s characteristics.

• Convert sensor angles to joint coordinates qj
(joint angles θj or joint displacements dj) using
the gear ratio. In this process, use a negative sign
to flip the joint angle direction if desired.

Input Processing Steps

• Get counts Qj from encoder counters, serial
communications, or analog-to-digital conversions.

• Convert counts to sensor shaft angles θsj or
sensor displacements dsj using knowledge of the
sensor’s characteristics.

• Convert sensor angles to joint coordinates qj
(joint angles θj or joint displacements dj) using
the gear ratio. In this process, use a negative sign
to flip the joint angle direction if desired.

!qk = !a ∗ !Qk +!b

Input Processing: from counts to joint values

Input Processing Steps

!qk = !a ∗ !Qk +!b

Input Processing: from counts to joint values

Input Processing Steps

• Check your work along the way.

!qk = !a ∗ !Qk +!b

Input Processing: from counts to joint values

Input Processing Steps

• Check your work along the way.

• How?

!qk = !a ∗ !Qk +!b

Input Processing: from counts to joint values

Input Processing Steps

• Check your work along the way.

• How?

• Units

!qk = !a ∗ !Qk +!b

Input Processing: from counts to joint values

Input Processing Steps

• Check your work along the way.

• How?

• Units

• Known configurations

!qk = !a ∗ !Qk +!b

Input Processing: from counts to joint values

Input Processing Steps

• Check your work along the way.

• How?

• Units

• Known configurations

• Ranges

!qk = !a ∗ !Qk +!b

Input Processing: from counts to joint values

Input Processing Steps

• Check your work along the way.

• How?

• Units

• Known configurations

• Ranges

• Record and graph

!qk = !a ∗ !Qk +!b

Input Processing: from counts to joint values

Input Processing Steps

• Check your work along the way.

• How?

• Units

• Known configurations

• Ranges

• Record and graph

• Check before you use the movement information
to output forces.

!qk = !a ∗ !Qk +!b

Input Processing: from counts to joint values

Digital differentiation
Many different methods
Simple Example:

 Position reading at time 1 = P1
 Position reading at time 2 = P2
 t is the period of the servo loop (in sec. or counts)

 The position is typically sampled on a fixed interval
Differentiation increases noise

V = P2 – P1
t

© A. Okamura + W. Provancher 2009Adapted from slides by Will Provancher

Noisy Velocity readings

 Noise on velocity signal can create jitter on your
haptic device when your controller has velocity
feedback (virtual damping)

 Common solutions
 Use a Tach/Generator

 Voltage goes with speed (same source as back-EMF)
 Resolution is set by your A/D converter

 Integrate the signal from an accelerometer
 Measure time per tick rather than ticks per time

 Use a special chip that measures time between ticks
 Especially good to do at slow speeds
 Fares poorly at high velocities

 Filtering (conventional to smooth or Kalman filtering to
combine sensor signals)

© W. Provancher 2009Adapted from slides by Will Provancher

Calculating Velocity

/***
 hapticCallback()
 Main callback that sets the force that the user will feel. It gets the current
 position and velocity of the device.
 This is what you want to edit to change the system's haptic feedback.
***/
HDCallbackCode HDCALLBACK hapticCallback(void *data)
{
	 // Local variables.
 hduVector3Dd position;
	 hduVector3Dd velocity;
	 hduVector3Dd force;
	 hduVector3Dd extraForce;
 hduVector3Dd proxyPosition;
	 HDint currentButtonState;
	 HDint lastButtonState;
	 double stiffness = 0.25; // Units are newtons per millimeter.

	 // Local variables for custom velocity calculation.
	 static bool firstTime = true;
	 static hduVector3Dd lastPosition; // mm
	 hduVector3Dd rawVelocity; // mm/s
	 static hduVector3Dd filteredVelocity(0.0, 0.0, 0.0); // mm/s
	 float filterWeight = 0.03;
	 float dampingCoefficient = 0.01; // N/(mm/s)
	 hduVector3Dd dampingForce; // N

	 // Get the handle for the current haptic device.
 HHD hHD = hdGetCurrentDevice();

	 // Begin the haptic frame for this device.
 hdBeginFrame(hHD);

	 // Get its position and velocity and store them in hduVector3Dd variables.
 hdGetDoublev(HD_CURRENT_POSITION, position); // Units are millimeters.
	 hdGetDoublev(HD_CURRENT_VELOCITY, velocity); // Units are millimeters per second.

	 // Fill lastPosition with current position if this is the first function call.
	 if (firstTime) {
	 	 lastPosition = position;
	 	 firstTime = false;
	 }

	 // Calculate the raw velocity from this position and lastPosition.
	 rawVelocity = (position - lastPosition) / DELTAT;

	 // Low-pass filter this raw velocity signal using a first-order IIR filter.
	 filteredVelocity = filterWeight * rawVelocity + (1 - filterWeight) * filteredVelocity;

	 // Store current position as lastPosition for next time.
	 lastPosition = position;

	 // Use the custom filtered velocity rather than SensAble's velocity?
	 // Comment out this line if you want to use the standard velocity.
	 velocity = filteredVelocity;

	 // Compute an extra damping force to add to the force the user feels,
 // just so you can test the velocity.
	 dampingForce = -dampingCoefficient * velocity;

	 // Other code....

	 // Compute the force.
	 force = stiffness * (proxyPosition - position) + dampingForce + extraForce;

Calculating Velocity

/***
 hapticCallback()
 Main callback that sets the force that the user will feel. It gets the current
 position and velocity of the device.
 This is what you want to edit to change the system's haptic feedback.
***/
HDCallbackCode HDCALLBACK hapticCallback(void *data)
{
	 // Local variables.
 hduVector3Dd position;
	 hduVector3Dd velocity;
	 hduVector3Dd force;
	 hduVector3Dd extraForce;
 hduVector3Dd proxyPosition;
	 HDint currentButtonState;
	 HDint lastButtonState;
	 double stiffness = 0.25; // Units are newtons per millimeter.

	 // Local variables for custom velocity calculation.
	 static bool firstTime = true;
	 static hduVector3Dd lastPosition; // mm
	 hduVector3Dd rawVelocity; // mm/s
	 static hduVector3Dd filteredVelocity(0.0, 0.0, 0.0); // mm/s
	 float filterWeight = 0.03;
	 float dampingCoefficient = 0.01; // N/(mm/s)
	 hduVector3Dd dampingForce; // N

	 // Get the handle for the current haptic device.
 HHD hHD = hdGetCurrentDevice();

	 // Begin the haptic frame for this device.
 hdBeginFrame(hHD);

	 // Get its position and velocity and store them in hduVector3Dd variables.
 hdGetDoublev(HD_CURRENT_POSITION, position); // Units are millimeters.
	 hdGetDoublev(HD_CURRENT_VELOCITY, velocity); // Units are millimeters per second.

	 // Fill lastPosition with current position if this is the first function call.
	 if (firstTime) {
	 	 lastPosition = position;
	 	 firstTime = false;
	 }

	 // Calculate the raw velocity from this position and lastPosition.
	 rawVelocity = (position - lastPosition) / DELTAT;

	 // Low-pass filter this raw velocity signal using a first-order IIR filter.
	 filteredVelocity = filterWeight * rawVelocity + (1 - filterWeight) * filteredVelocity;

	 // Store current position as lastPosition for next time.
	 lastPosition = position;

	 // Use the custom filtered velocity rather than SensAble's velocity?
	 // Comment out this line if you want to use the standard velocity.
	 velocity = filteredVelocity;

	 // Compute an extra damping force to add to the force the user feels,
 // just so you can test the velocity.
	 dampingForce = -dampingCoefficient * velocity;

	 // Other code....

	 // Compute the force.
	 force = stiffness * (proxyPosition - position) + dampingForce + extraForce;

Calculating Velocity

/***
 hapticCallback()
 Main callback that sets the force that the user will feel. It gets the current
 position and velocity of the device.
 This is what you want to edit to change the system's haptic feedback.
***/
HDCallbackCode HDCALLBACK hapticCallback(void *data)
{
	 // Local variables.
 hduVector3Dd position;
	 hduVector3Dd velocity;
	 hduVector3Dd force;
	 hduVector3Dd extraForce;
 hduVector3Dd proxyPosition;
	 HDint currentButtonState;
	 HDint lastButtonState;
	 double stiffness = 0.25; // Units are newtons per millimeter.

	 // Local variables for custom velocity calculation.
	 static bool firstTime = true;
	 static hduVector3Dd lastPosition; // mm
	 hduVector3Dd rawVelocity; // mm/s
	 static hduVector3Dd filteredVelocity(0.0, 0.0, 0.0); // mm/s
	 float filterWeight = 0.03;
	 float dampingCoefficient = 0.01; // N/(mm/s)
	 hduVector3Dd dampingForce; // N

	 // Get the handle for the current haptic device.
 HHD hHD = hdGetCurrentDevice();

	 // Begin the haptic frame for this device.
 hdBeginFrame(hHD);

	 // Get its position and velocity and store them in hduVector3Dd variables.
 hdGetDoublev(HD_CURRENT_POSITION, position); // Units are millimeters.
	 hdGetDoublev(HD_CURRENT_VELOCITY, velocity); // Units are millimeters per second.

	 // Fill lastPosition with current position if this is the first function call.
	 if (firstTime) {
	 	 lastPosition = position;
	 	 firstTime = false;
	 }

	 // Calculate the raw velocity from this position and lastPosition.
	 rawVelocity = (position - lastPosition) / DELTAT;

	 // Low-pass filter this raw velocity signal using a first-order IIR filter.
	 filteredVelocity = filterWeight * rawVelocity + (1 - filterWeight) * filteredVelocity;

	 // Store current position as lastPosition for next time.
	 lastPosition = position;

	 // Use the custom filtered velocity rather than SensAble's velocity?
	 // Comment out this line if you want to use the standard velocity.
	 velocity = filteredVelocity;

	 // Compute an extra damping force to add to the force the user feels,
 // just so you can test the velocity.
	 dampingForce = -dampingCoefficient * velocity;

	 // Other code....

	 // Compute the force.
	 force = stiffness * (proxyPosition - position) + dampingForce + extraForce;

Calculating Velocity

/***
 hapticCallback()
 Main callback that sets the force that the user will feel. It gets the current
 position and velocity of the device.
 This is what you want to edit to change the system's haptic feedback.
***/
HDCallbackCode HDCALLBACK hapticCallback(void *data)
{
	 // Local variables.
 hduVector3Dd position;
	 hduVector3Dd velocity;
	 hduVector3Dd force;
	 hduVector3Dd extraForce;
 hduVector3Dd proxyPosition;
	 HDint currentButtonState;
	 HDint lastButtonState;
	 double stiffness = 0.25; // Units are newtons per millimeter.

	 // Local variables for custom velocity calculation.
	 static bool firstTime = true;
	 static hduVector3Dd lastPosition; // mm
	 hduVector3Dd rawVelocity; // mm/s
	 static hduVector3Dd filteredVelocity(0.0, 0.0, 0.0); // mm/s
	 float filterWeight = 0.03;
	 float dampingCoefficient = 0.01; // N/(mm/s)
	 hduVector3Dd dampingForce; // N

	 // Get the handle for the current haptic device.
 HHD hHD = hdGetCurrentDevice();

	 // Begin the haptic frame for this device.
 hdBeginFrame(hHD);

	 // Get its position and velocity and store them in hduVector3Dd variables.
 hdGetDoublev(HD_CURRENT_POSITION, position); // Units are millimeters.
	 hdGetDoublev(HD_CURRENT_VELOCITY, velocity); // Units are millimeters per second.

	 // Fill lastPosition with current position if this is the first function call.
	 if (firstTime) {
	 	 lastPosition = position;
	 	 firstTime = false;
	 }

	 // Calculate the raw velocity from this position and lastPosition.
	 rawVelocity = (position - lastPosition) / DELTAT;

	 // Low-pass filter this raw velocity signal using a first-order IIR filter.
	 filteredVelocity = filterWeight * rawVelocity + (1 - filterWeight) * filteredVelocity;

	 // Store current position as lastPosition for next time.
	 lastPosition = position;

	 // Use the custom filtered velocity rather than SensAble's velocity?
	 // Comment out this line if you want to use the standard velocity.
	 velocity = filteredVelocity;

	 // Compute an extra damping force to add to the force the user feels,
 // just so you can test the velocity.
	 dampingForce = -dampingCoefficient * velocity;

	 // Other code....

	 // Compute the force.
	 force = stiffness * (proxyPosition - position) + dampingForce + extraForce;

Calculating Velocity

vsmooth(k) = w · vraw(k) + (1 − w) · vsmooth(k − 1)

λ =
w

T (1 − w)

λ =
w

T (1 − w)
f = λ ·

1 cycle

2π rad
=

w

T (1 − w)
·

1 cycle

2π rad

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

50

100

150

200

250

300

350

400

450

500

Filter Weight

Lo
w
−P

as
s

Fi
lte

r B
an

dw
id

th
 (H

z)

Sampling Rate = 1000 Hz

λ =
w

T (1 − w)
f = λ ·

1 cycle

2π rad
=

w

T (1 − w)
·

1 cycle

2π rad

/***
 hapticCallback()
 Main callback that sets the force that the user will feel. It gets the current
 position and velocity of the device.
 This is what you want to edit to change the system's haptic feedback.
***/
HDCallbackCode HDCALLBACK hapticCallback(void *data)
{
	 // Local variables.
 hduVector3Dd position;
	 hduVector3Dd velocity;
	 hduVector3Dd force;
	 hduVector3Dd extraForce;
 hduVector3Dd proxyPosition;
	 HDint currentButtonState;
	 HDint lastButtonState;
	 double stiffness = 0.25; // Units are newtons per millimeter.

	 // Local variables for custom velocity calculation.
	 static bool firstTime = true;
	 static hduVector3Dd lastPosition; // mm
	 hduVector3Dd rawVelocity; // mm/s
	 static hduVector3Dd filteredVelocity(0.0, 0.0, 0.0); // mm/s
	 float filterWeight = 0.03;
	 float dampingCoefficient = 0.01; // N/(mm/s)
	 hduVector3Dd dampingForce; // N

	 // Get the handle for the current haptic device.
 HHD hHD = hdGetCurrentDevice();

	 // Begin the haptic frame for this device.
 hdBeginFrame(hHD);

	 // Get its position and velocity and store them in hduVector3Dd variables.
 hdGetDoublev(HD_CURRENT_POSITION, position); // Units are millimeters.
	 hdGetDoublev(HD_CURRENT_VELOCITY, velocity); // Units are millimeters per second.

	 // Fill lastPosition with current position if this is the first function call.
	 if (firstTime) {
	 	 lastPosition = position;
	 	 firstTime = false;
	 }

	 // Calculate the raw velocity from this position and lastPosition.
	 rawVelocity = (position - lastPosition) / DELTAT;

	 // Low-pass filter this raw velocity signal using a first-order IIR filter.
	 filteredVelocity = filterWeight * rawVelocity + (1 - filterWeight) * filteredVelocity;

	 // Store current position as lastPosition for next time.
	 lastPosition = position;

	 // Use the custom filtered velocity rather than SensAble's velocity?
	 // Comment out this line if you want to use the standard velocity.
	 velocity = filteredVelocity;

	 // Compute an extra damping force to add to the force the user feels,
 // just so you can test the velocity.
	 dampingForce = -dampingCoefficient * velocity;

	 // Other code....

	 // Compute the force.
	 force = stiffness * (proxyPosition - position) + dampingForce + extraForce;

Calculating Velocity

A sample custom haptic device

KnobKnob

Motor with Gearhead and Digitial EncoderMotor with Gearhead and Digitial Encoder

Force/Torque SensorForce/Torque Sensor

KnobKnob

Motor with Gearhead and Digitial EncoderMotor with Gearhead and Digitial Encoder

Force/Torque SensorForce/Torque Sensor

KnobKnob

Motor with Gearhead and Digitial EncoderMotor with Gearhead and Digitial Encoder

Force/Torque SensorForce/Torque Sensor

KnobKnob

Motor with Gearhead and Digitial EncoderMotor with Gearhead and Digitial Encoder

Force/Torque SensorForce/Torque Sensor

τm = kp(θd − θm) + kd(ωd − ωm)

τm = kp(θd − θm) + kd(ωd − ωm)

∆θm ≈ 1.8
◦

}

∆θm = 1.8
◦
·

51200 counts

360◦
= 256 counts

Know your sensors and your signals.

Thank You

Questions?

kuchenbe@seas.upenn.edu
http://haptics.grasp.upenn.edu

